Outlier preservation by dimensionality reduction techniques

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier preservation by dimensionality reduction techniques

Sensors are increasingly part of our daily lives: motion detection, lighting control, and energy consumption all rely on sensors. Combining this information into, for instance, simple and comprehensive graphs can be quite challenging. Dimensionality reduction is often used to address this problem, by decreasing the number of variables in the data and looking for shorter representations. However...

متن کامل

Dimensionality Reduction with Subspace Structure Preservation

Modeling data as being sampled from a union of independent subspaces has been widely applied to a number of real world applications. However, dimensionality reduction approaches that theoretically preserve this independence assumption have not been well studied. Our key contribution is to show that 2K projection vectors are sufficient for the independence preservation of any K class data sample...

متن کامل

Image Reduction Using Assorted Dimensionality Reduction Techniques

Dimensionality reduction is the mapping of data from a high dimensional space to a lower dimension space such that the result obtained by analyzing the reduced dataset is a good approximation to the result obtained by analyzing the original data set. There are several dimensionality reduction approaches which include Random Projections, Principal Component Analysis, the Variance approach, LSA-T...

متن کامل

Transformation invariant and outlier revealing dimensionality reduction using triplet embedding

ABSTRACT We propose a number of tests for dimensionality reduction methods. The tests allow the practitioner to build con�dence about the dimensionality reduction results of a particular method. The tests include the invariance of the dimensionality reduction method to certain natural transformations and the detection of constructed outliers. We then evaluate the most commonly used dimensionali...

متن کامل

Outlier Detection in the Framework of Dimensionality Reduction

We propose an effective outlier detection algorithm for high-dimensional data. We consider manifold models of data as is typically assumed in dimensionality reduction/manifold learning. Namely, we consider a noisy data set sampled from a low-dimensional manifold in a high-dimensional data space. Our algorithm uses local geometric structure to determine inliers, from which the outliers are ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Data Analysis Techniques and Strategies

سال: 2015

ISSN: 1755-8050,1755-8069

DOI: 10.1504/ijdats.2015.071365